A glass capillary ultramicroelectrode with an electrokinetic sampling ability.
نویسندگان
چکیده
A glass capillary ultramicroelectrode (tip diameter approximately 1.2 microm) having an electrokinetic sampling ability is described. It is composed of a pulled glass capillary filled with an inner solution and three internal electrodes (Pt working and counter electrodes and an Ag/AgCl reference electrode). The voltammetric response of the capillary electrode is based on electrokinetic transport of analyte ions from the sample solution into the inner solution across the conical tip. It was found that the electrophoretic migration of analytes at the conical tip is faster than electroosmotic flow, enabling electrokinetic transport of analyte ions into the inner solution of the electrode. By using [Fe(CN)6]4- and (ferrocenylmethyl)trimethylammonium (FcTMA+) ions as model analytes, differential pulse voltammetric responses of the capillary electrode were investigated in terms of tip diameter of the capillary, sampling voltage, sampling time, detection limit and selectivity. The magnitude of the response depends on the size and charge of analyte ions. With a capillary electrode having a approximately 1.2-microm tip diameter, which minimizes non-selective diffusional entry of analytes, the response after 1 h sampling at +1.7 V is linearly related to [Fe(CN)6]4- concentration in the range of 0.50-5.0 mM with the detection limit of 30 microM. Application of a potential of the same sign as that of the analyte ion forces the analyte to move out from the electrode to the solution, enabling reuse of the same capillary electrode. The charge-selective detection of analytes with the capillary electrode is demonstrated for [Fe(CN)6]4- in the presence of FcTMA+.
منابع مشابه
Silicate glass coated microchannels through a phase conversion process for glass-like electrokinetic performance.
The surface modified polydimethylsiloxane (PDMS) microchannels show a much more inferior performance to the durable and reproducible glass chip. In this paper, a facile approach to preparing a silicate glass modified PDMS microchannel for glass-like performance is presented. This glass-like performance is made possible by a phase conversion of a preceramic polymer--allylhydridopolycarbosilane (...
متن کاملMicellar electrokinetic chromatography and capillary electrochromatography of nitroaromatic explosives in seawater.
The ability to separate nitroaromatic and nitramine explosives in seawater sample matrices is demonstrated using both MEKC and CEC. While several capillary-based separations exist for explosives, none address direct sampling from seawater, a sample matrix of particular interest in the detection of undersea mines. Direct comparisons are made between MEKC and CEC in terms of sensitivity and separ...
متن کاملDetermination of imidacloprid and its metabolite 6-chloronicotinic acid in greenhouse air by application of micellar electrokinetic capillary chromatography with solid-phase extraction.
A method is described for the analysis of the insecticide imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and its metabolite 6-chloronicotinic acid by micellar electrokinetic chromatography with diode-array detection at 270 and 227 nm, respectively. The best results were obtained using sodium dodecyl sulphate at a concentration of 60 mM and a running buffer of NH4...
متن کاملCapillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.
In this paper, we report a novel method for fabricating ion-selective membranes in poly(dimethylsiloxane) (PDMS)/glass-based microfluidic preconcentrators. Based on the concept of capillary valves, this fabrication method involves filling a lithographically patterned junction between two microchannels with an ion-selective material such as Nafion resin; subsequent curing results in a high aspec...
متن کاملPoly(dimethylsiloxane) microchip for precolumn reaction and micellar electrokinetic chromatography of biogenic amines.
We have demonstrated that precolumn derivatization and capillary electrophoresis separation on a poly(dimethylsiloxane) (PDMS) microchip can be realized as efficient as those on glass microchips. In an optimized condition of micellar electrokinetic chromatography (MEKC), using 25 mM sodium borate buffer (pH 10.0) with 25 mM sodium dodecyl sulfate (SDS) and 5% v/v methanol, the electroosmotic fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2001